Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2235709

ABSTRACT

Despite the widespread use of the COVID-19 vaccines, the search for effective antiviral drugs for the treatment of patients infected with SARS-CoV-2 is still relevant. Genetic variability leads to the continued circulation of new variants of concern (VOC). There is a significant decrease in the effectiveness of antibody-based therapy, which raises concerns about the development of new antiviral drugs with a high spectrum of activity against VOCs. We synthesized new analogs of uracil derivatives where uracil was substituted at the N1 and N3 positions. Antiviral activity was studied in Vero E6 cells against VOC, including currently widely circulating SARS-CoV-2 Omicron. All synthesized compounds of the panel showed a wide antiviral effect. In addition, we determined that these compounds inhibit the activity of recombinant SARS-CoV-2 RdRp. Our study suggests that these non-nucleoside uracil-based analogs may be of future use as a treatment for patients infected with circulating SARS-CoV-2 variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19 Vaccines , Humans , Uracil/pharmacology
2.
Cell Mol Life Sci ; 78(23): 7777-7794, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1491058

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.


Subject(s)
Phospholipases A2/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Viper Venoms/pharmacology , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Affinity/drug effects , Antiviral Agents/pharmacology , Cell Fusion , Cell Line , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , HEK293 Cells , Humans , Models, Molecular , Protein Domains/drug effects , Surface Plasmon Resonance , Vero Cells , Viper Venoms/enzymology , COVID-19 Drug Treatment
3.
Viruses ; 13(10)2021 10 06.
Article in English | MEDLINE | ID: covidwho-1463834

ABSTRACT

The search for effective methods to detect patients who excrete a viable virus is one of the urgent tasks of modern biomedicine. In the present study, we examined the diagnostic value of two antigen tests, BIOCREDIT COVID-19 Ag (RapiGEN Inc., Anyang, Korea) and SGTI-flex COVID-19 Ag (Sugentech Inc., Cheongju, Korea), for their diagnostic value in identifying patients who excrete viable SARS-CoV-2. As part of the study, we examined samples from 106 patients who had just been admitted to the hospital and who had undergone quantitative RT-PCR and assessment of viability of SARS-CoV-2 using cell culture. Assessment of the tests' value for detecting samples containing viable virus showed high sensitivity for both tests. Sensitivity was 78.6% (95% CI, from 49.2% to 95.3%) for SGTI-flex COVID-19 Ag and 100% (95% CI, from 76.8% to 100%) for Biocredit COVID-19 Ag. The specificity of rapid tests was significantly higher than that of RT-PCR and was 66.3% (95% CI, from 55.7% to 75.8%) and 67.4% (95% CI, from 56.8% to 76.8%) for SGTI-flex COVID-19 Ag and Biocredit COVID-19 Ag versus 30.4% (95% CI, from 21.3% to 40.9%) obtained for PCR. Thus, for tasks of identifying viable SARS-CoV-2 during screening of conditionally healthy people, as well as monitoring those quarantined, rapid tests show significantly better results.


Subject(s)
Antigens, Viral/analysis , Antigens, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Mass Screening/methods , Middle Aged , Moscow , Point-of-Care Testing , Polymerase Chain Reaction , Sensitivity and Specificity
4.
Vaccines (Basel) ; 9(7)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1308465

ABSTRACT

Since the beginning of the 2021 year, all the main six vaccines against COVID-19 have been used in mass vaccination companies around the world. Virus neutralization and epidemiological efficacy drop obtained for several vaccines against the B.1.1.7, B.1.351 P.1, and B.1.617 genotypes are of concern. There is a growing number of reports on mutations in receptor-binding domain (RBD) increasing the transmissibility of the virus and escaping the neutralizing effect of antibodies. The Sputnik V vaccine is currently approved for use in more than 66 countries but its activity against variants of concern (VOC) is not extensively studied yet. Virus-neutralizing activity (VNA) of sera obtained from people vaccinated with Sputnik V in relation to internationally relevant genetic lineages B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 and Moscow endemic variants B.1.1.141 (T385I) and B.1.1.317 (S477N, A522S) with mutations in the RBD domain has been assessed. The data obtained indicate no significant differences in VNA against B.1.1.7, B.1.617.3 and local genetic lineages B.1.1.141 (T385I), B.1.1.317 (S477N, A522S) with RBD mutations. For the B.1.351, P.1, and B.1.617.2 statistically significant 3.1-, 2.8-, and 2.5-fold, respectively, VNA reduction was observed. Notably, this decrease is lower than that reported in publications for other vaccines. However, a direct comparative study is necessary for a conclusion. Thus, sera from "Sputnik V"-vaccinated retain neutralizing activity against VOC B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3 as well as local genetic lineages B.1.1.141 and B.1.1.317 circulating in Moscow.

5.
Int J Mol Sci ; 21(23)2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-954912

ABSTRACT

In 2020 the world faced the pandemic of COVID-19 severe acute respiratory syndrome caused by a new type of coronavirus named SARS-CoV-2. To stop the spread of the disease, it is crucial to create molecular tools allowing the investigation, diagnoses and treatment of COVID-19. One of such tools are monoclonal antibodies (mAbs). In this study we describe the development of hybridoma cells that can produce mouse mAbs against receptor binding domain of SARS-CoV-2 spike (S) protein. These mAbs are able to specifically detect native and denatured S proteins in all tested applications, including immunoblotting, enzyme-linked immunosorbent assay, immunofluorescence staining of cells and immunohistochemical staining of paraffin embedded patients' tissue samples. In addition, we showed that the obtained mAbs can efficiently block SARS-CoV-2 infection in in vitro experiments. Finally, we determined the amino acid sequence of light and heavy chains of the mAbs. This information will allow the use of corresponding peptides to establish genetically engineered therapeutic antibodies. To date multiple mAbs against SARS-CoV-2 proteins have been established, however, bigger sets of various antibodies will allow the detection and neutralization of SARS-CoV-2, even if the virus acquires novel mutations.


Subject(s)
Antibodies, Monoclonal/metabolism , Antigens, Viral/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antigen-Antibody Reactions , Antigens, Viral/immunology , COVID-19/pathology , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Hybridomas/cytology , Hybridomas/metabolism , Immunohistochemistry , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Protein Domains/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL